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Overview

mm |IMELINE

» Start: September 2019
* End: May 2021

* 100 % complete

mm BUDGET

 Total project funding
« $300k / 1 year

m PARTNERS

 City of San Jose

* Traffic assignment has traditionally
focused only on user equilibrium travel
time, not energy use at the system level.

« Static traffic assignment 1s not realistic
as 1t cannot capture time-dependent
traffic demand and ensure the
continuity of traffic flows.

 Traditional dynamic traffic assignment
models have limitations in terms of
scalability and computational
efficiency.



Relevance and Project Objectives

e Overall Goal:

* Use of high-performance computing to address the compute load of traffic
assignment methodologies and optimize for energy use in large scale networks

s Objective:

* Develop traffic assignment computational solutions that provide more realistic
results for evaluating traffic in large scale urban areas by representing demand
dynamics over significantly smaller time steps than traditional approaches.

* Develop traffic assignment computational solutions that run in significantly
reduced time frames by using parallel algorithms on high- performance
computing.

» Introduce additional optimization objectives to the standard user travel time
evaluations.

mmm |Mpact:

* Enable computationally-efficient solutions for large-scale transportation
planning and operation decisions that consider energy and travel time.




Approach

L)

» Develop a metropolitan-scale, quasi-dynamic, parallel traffic assignment
model that runs 1n significantly shorter compute times than alternative models

L)

4

L)

» Investigate time-based and energy-based optimization with a user focus and a
system level focus

L)

L)

» Compare network metrics, energy, and mobility metrics across three
optimization objective functions:

v’ User equilibrium travel time (UET) based,

v System optimal travel time (SOT) based, and

v System optimal fuel use (SOF)

L)



Approach
Consider Three Optimizations

T(gi)ve =to(1+ 0+ (gi/ci)P) (1)
T (g:)vE Tyg — User Equilibrium Travel Time
dqi Tgo — System Optimal Travel Time

Flod = 3_5 i 3) Fso — System Optimal Fuel

i

T(gi)so = T(qi)ve + * g (2)

where: 1 is the free flow link travel time, g; is link flow, ¢; is link capacity, v; is the free flow link
speed and o and 3 are BPR coefficients 0.15 and 4 respectively. For system optimal fuel, f; is the
fuel consumption in grams/veh specified as

fi=L(A+E+0v))

where /; is the length of link, A, B,C are constants estimated from real world drive cycles A = Data Driven Energy Model
—6.54170583¢ — 03,B = 1.90215003,C = 1.58863662¢ — 05, and v; is the congested speed de- swof . e
~ Vi

fined as v; = A -

R?=0.987
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Approach

Quas1 Dynamic Traffic Assignment (QDTA) Algorithms

Z — \ ,_,\\ ?/\

Network

Algorithm 1: Quasi-dynamic traffic assignment

Data: Network graph G(V, A)
Time step length 7°

Total time step counts N
Original travel demand of all time steps d° = {d°(¢;)}, with i € {0,..., N — 1}

Initialize d” (ty) = empty nested associative array ; // No residual demand in the first time step
fori=0i<N;i+=1; // Sequential discrete time step simulation
do

d(t;) =d°(t;) +d"(t;) ; // Get original and residual demand

h5T4(t;) = Traffic_assignment(G, T, d(t;)); // Path flow assignment using STA approximation
h(t;),d" (t;11) = Residual_demand(G, T, h®T4(t;)); // Truncate path flows and get residual
demand based on time step length

end
Result: h = h(t;), withi € 0,...,N —1; // Path flow for all time steps

STA-based flow solution is first obtained using the Frank-Wolfe’s algorithm
(Algorithm 2, Algorithm 3). Path truncation is performed in each iterative step of the
Frank-Wolfe’s algorithm (Algorithm 3). A last round of route truncation to obtain a
more accurate flow assignment and residual demand to be carried over to the next
time step (Algorithm 4).

Detail of algorithms 2 -4 included in technical backup.



Approach
Demand Profile Comparison
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Approach

Key Element of QDTA : Residual Demand

QDTA demand
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Approach

Find Opportunities to Parallelize

Load road network and
travel demand

Quasi Dynamic Traffic Assignment

v
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Accomplishments

Find Opportunities to Parallelize

Load road network and
travel demand

Quasi Dynamic Traffic Assignment

v HPC Parallel Frank-Wolfe Optimization
Initialize network,
routing engine,fuel . . Update
model, fleet E:L ﬂow: | UP gzt:t;mk network link
composition weights
v t ¥
Set time T: Add residual network Parallel Routing GASNET
Derive demand from | demand from preceding — Routing Origin/ .
travel demand model time segment Origin/ _ZI Parallelize Destination [-# Line
Destination—= - . Search
i i & Aggregate With Route
Step Size
No Check
convergence
]
]
Identify residual | Parallel Location Prediction GASNET Origin/
T=T+deltat trips for new time *| Determine location at end of time segment T Destinations
segment e Parallelize & Aggregate With Routes




Accomplishments

Quasi-Newton Line Search vs. Method of
Successive Averages (MSA)

During 7-11am Peak Congestion: 34% Performance Improvement vs MSA
Overall (24 Hours): 16% Performance Improvement vs MSA
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Accomplishments

Parallel Compute Performance — SF Bay Area Network

Original Serial Run Time with 19 million trips over 2 million links: over 2 hours
Enabled 10x Performance Speedup using 32 cores on a single node: 14 minutes
Enabled 36x Performance Speedup (overall) using 32 nodes (1,024 cores): 4 minutes
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Accomplishments

Computational Performance for QDTA and
Hybrid QDTA/Mobilit1 Stmulation

* Hybrid QDTA/Mobiliti Simulation:
* Generate the QDTA defined routes
* Simulate using Mobiliti (eems 037)

Bay Area UET QDTA BPR 231 IM Links, 19M Trips
Bay Area Hybrid Simulation BPR 33
Bay Area Hybrid Simulation Queue & Storage 93
Los Angeles UET DTA BPR 596 2M Links, 40M Trips
Los Angeles Hybrid Simulation BPR 143
Los Angeles Hybrid Simulation Queue & Storage 570

Allows comparison to other types of route assignment, e.g. part of the fleet is
dynamically routed or impact of network changes during simulation



Accomplishments
Average Velocity over Capacity

Classified by Functional Class of Link

Average VOC ratio by time Traffic count Comparison
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Accomplishments

System Metrics

Category System Leve
STA' QDTA  STA  QDTA  STA  QDTA

FC2 1644  18.11 0.52 0.69 17.57  96.84

FC3 4.67 5.01 0.23 0.30 2.65 14.43

4.96 5.25 0.14 0.17 1.13 6.42

2.43 2.60 0.03 0.48 0.38 17.78

28.51  30.98 - - 2195  135.49

Category Congested Network

- STA' QDTA  STA  QDTA  STA  QDTA

131 553 1.77 7.56 1.15 1.26

FC3 38 88 0.17 0.42 1.18 1.28

14 56 0.04 0.15 1.19 1.21

FC5 5 28 0.01 0.06 1.17 1.25

188 725 2.0 8.19 : -



Accomplishments

Static Traffic Assignment Underestimates Congestion
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Static Traffic Assignment

Quasi Dynamic Traffic Assignment

* 8am to Y9am
traffic patterns

* VOC higher on a
large part of the

network



Evaluating the impacts on Cities

VMT on neighborhood residential streets

Neighborhood VHD on neighborhood residential streets
Number of schools near high and medium traffic streets

VMT near schools in morning hours
Safety Estimated number of highway accidents/year
VMT

VHD

Mobility Congested network miles in morning
Average trip length (miles)

Average trip delay (minutes)

Minority schools near high and medium traffic streets (%)

Equity VMT on disadvantaged communities
VHD on disadvantaged communities
Total fuel consumption (litres)

Environment

Average trip fuel consumption (litres)

San Jose

mUET mSOT mSOF

Community, City

City

User, City

Community, City

User, City



Evaluating the impacts on Cities

Theme: Neighborhood

* VMT disproportionately increases on neighborhood residential streets with SOT and SOF
derived routes.
= While the total system VMT reduces with SOT and SOF, the residential VMT increases for
both cases. Neighborhood residential streets account for 4% of the total VMT in UET which
increases to 5% and 11% with SOT and SOF respectively.
* The number of schools exposed to high and medium traffic increases significantly with SOF due
to the shift to local roads.
= Exposure to high and medium traffic occurs for 9% of schools in UET. This percentage
slightly increases with SOT and doubles with SOF.

Theme: Mobility
* System VMT decreases with SOT and SOF compared to UET.
* VHD decrease with SOT and increase with SOF.



Evaluating the impacts on Cities

Theme: Equity
* Minority schools bear disproportionate impacts of traffic exposure.

= 22% of schools are categorized as minority schools in San Jose. The proportion of schools affected by
this predicted exposure 1s 41% in UET.

= This percentage further increases by at least 5 percentage points with SOT and SOF.

Consistent with total VMT reduction trends, VMT in disadvantaged communities reduces with SOT and
SOF routing.

= Note that the population in disadvantaged communities constitutes 32% of the total, but account for 40%
VMT and 55% VHD with UET. A This reflects the tendency of these communities to be located near
highways with high flow rates.

= These percentages are reduced with SOT and SOF optimizations.



I Comparison Across Cities

VMT on neighborhood residential streets
Neighborhood VHD on neighborhood residential streets

Number of schools near high and medium traffic streets

VMT near schools in moming hours

Safety Estimated number of highway accidents/year
VMT

VHD

Mobility Congested k miles in g
Average trip length (miles)

Average trip delay (minutes)

Minority schools near high and medium traffic streets (%)

L VMT on disadvantaged communities
VHD on disadvantaged communities
Total fuel consumption (litres)

Environment

Average trip fuel consumption (litres)

San Francisco
®mUET mSOT mSOF

Community, City

City

User, City

Community, City

User, City

VMT on neighborhood residential streets
Neighborhood VHD on neighborhood residential streets
Number of schools near high and medium traffic streets

VMT near schools in morning hours

d number of high year

Safety
VMT
VHD
Mobility Congested rk miles in

Average trip length (miles)

Average trip delay (minutes)

Minority schools near high and medium traffic streets (%)
Equity VMT on disadvantaged communities
'VHD on disadvantaged communities
Total fuel consumption (litres)

Environment
Average trip fuel consumption (litres)

VMT on neighborhood residential streets

Neighborhood VHD on neighborhood residential streets
Number of schools near high and medium traffic streets

VMT near schools in morning hours

Safety Estimated number of highway accidents/year
V

=

T
Vi
Mobility C d rk miles in

5

Average trip length (miles)

Average trip delay (minutes)

Minority schools near high and medium traffic streets (%)
Equity VMT on disadvantaged communities
VHD on disadvantaged communities
Total fuel consumption (litres)

Environment
Average trip fuel consumption (litres)

Oakland

mUET mSOT mSOF

Concord
W UET mSOT mSOF

Community, City

City

User, City

Community, City

User, City

Community, City

City

User, City

Community, City

User, City



Accomplishments

Validation — San Jose Vehicle Counts, PeMS
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Response to Previous Comments

The reviewer noted the project was relevant as 1t applies HPC to large-scale

network modeling and aims to support an eventual simulation framework

» We have integrated the work into the Mobiliti simulation platform, thus providing a capability to evaluate
standard optimizations, such at User Equilibrium Travel Time and System Optimal Travel Time, in context of
alternate approaches for optimizing traffic in large urban environments.

The reviewer asked 1f planners would need supercomputers continually - as

things change.

» The sister project to this, eems037, aims to generate surrogate models built by running many simulations to
create training data for the purpose of obviating the need for HPC. We are also investigating moving the
platform to a cloud computing environment.

 This is a topic of follow-on work in the eems037 project, in which we are exploring the appropriate level of
fidelity for fuel use estimates. We are using real-world gps traces to inform these models in order to improve
the cost measures for highly congested link states.



Collaboration and Coordination
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Challenges and Proposed Future Research

* Collaborate with the City of San Jose to include QDTA results into decision
making for city

* Understand where the fuel focused objective function breaks down

* Further develop Al/deep learning solutions to the traffic management

* Use QDTA as a fast solver to provide ensembles of training samples into our
Mobilitt machine learning/ Al framework

Any proposed future work is subject to change based on funding levels.



Summary

An implementation of a large-scale, urban traffic assignment that uses the newly
developed Quasi Dynamic Traffic Assignment algorithms generated more realistic
results fﬁr evaluating traffic than a standard multi-hour Static Traffic Assignment
approach.

The parallelized traffic assifgnment computational solution on HPC runs in
significantly reduced time frames. The Bay Area traffic assignment for a ~1M
node network with 19M tr%/ml legs runs in ~4 minutes. The Los Angeles Basin
traffic assignment for a ~2M node network with 40M trip legs runs in ~10
minutes.

Additional optimization objectives to the standard user travel time evaluation were
also evaluated: system optimized travel time and system optimized fuel use.

Paper on ArXive https://arxiv.org/abs/2104.12911
Quasi-Dynamic Traffic Assignment using High Performance Computing

Cy Chan, Anu Kuncheria, Bingyu Zhao, Theophile Cabannes, Alexander Keimer, Bin

ang, Alexandre Bayen, Jane Macfarlane

Submitted to Transportation Research


https://arxiv.org/abs/2104.12911

Technical Backup



Algorithm 2

Algorithm 2: Traffic_assignment: using Frank-Wolfe’s algorithm

Data: Network graph G(V, A)
Time step length At
Travel demand of current step d € RYXY

Free-flow travel time of each link ¢y = {co,0}, witha e A

Take h = All_or_nothing(G, At,d, co) ; // Set initial path flow in the free-flow condition
while True ; // Gradient descent step
do
c = BPR(Ah) ; // Calculate the edge travel time
hAON = All_or_nothing(G, At,d, c) ; // All-or-nothing path flow with new edge weights
a* = arg min,, Cost_function (A [h + - (hAON — h)]) : // Exact line search
Rpew = h + o* - (RN —h); // Update path flows
if Converged (Ah, Ah, ) ; // Check convergence
then
| break
end
h = hnew >
end

Result: h ; // Path flow using STA




Algorithm 3

Algorithm 3: All_or_nothing: iterative step of the Frank-Wolfe Algorithm

Data: Network graph G(V, A)
Time step length At
Travel demand of current step d € RYXY
Edge travel time/cost ¢ = {c,},a € A

Initialize h = empty associative array ;

for dp,q ed | dp,q >0 ,

do
rsp = Get_shortest_path(p, ¢, ¢, G) ;
T4p = Truncate_path(rsy, c, G, At) ;
h += dp,q 5

end

Result: h ;

Ttp

// Initialize the path flow vector
// Iterate over non-zero elements
// Get shortest path to destination

// Truncate path according to time step length
// Add trips to the path flow vector

// Path flow from all-or-nothing assignment




Algorithm 4

Algorithm 4: Residual_demand: trips that cannot finish in one assignment interval

Data: Network graph G(V, A)
Time step length At;
Intermediate path flow results from the STA h574(3)
All paths used in the time step R (i) = {R, 4}, with (p, q) € R¥}Y

Initialize d" (7 + 1) = empty nested associative array ; // Initialize the residual demand vector,
will be added to the demand of the next step
Initialize h(7) = empty associative array ; // Initialize the truncated path flow vector
Take ¢ = BPR(ARSTA(3)) ; // Edge travel time based on path/link flow from STA
for r € R(7) ; // Parallelizable for loop
do
rp = Truncate_path(r, ¢, G, At;) ; // Truncate path to what can be traversed in the time
step
hr, (1) +=h2TA(5) ; // Populate the path flow vector
ifry #r; // Flow has not reached its destination within the time slice
then

s = Get_last_vertex(ryy);

q = Get_last_vertex(r);

d7 (i + 1) += hSTAG) ; // Add to residual demand
end

end
Result: h(i),d (i + 1) ; // Path flow for the current time step using QDTA, and residual
demand to be added to the next time step




